
1 Transformations
Earlier in the course we have seen that OpenGL uses matrices to compute transformations 

(scaling,  translation,  rotation with 'glScale()'  & Co) and also to compute the projection of  the 
camera with 'gluPersepective()'.  This part will focus on explaining the mathematics behind the 
scene. Even though OpenGL seems to hide these calculus with the transformation functions like 
'glRotate()',  you will  need a minimal  understanding of the mechanisms in order to implement 
standard computer graphics algorithms. The goal of the chapter is not to understand perfectly the 
mathematics with rigorous and complicated demonstrations but rather gives one the means to 
use the mathematics as an efficient tool. 

1.1 2D transformations

2D transformations are convenient to introduce the subject. They also has the advantage to be 
easier to illustrate. Moreover the analogy to the 3D space is almost painless.

1.1.1 2D rotation

Here  is  a  basic  example  of  how  to  rotate  a  point  [ x y ] around  the  origin  of  a  Cartesian 
coordinate  system:

{ x '=cos(θ). x−sin (θ). y
y '=sin(θ). x+cos (θ) . y

The point [ x ' y ' ] is the rotation of [ x y ] about the angle θ from the origin. This can actually be 
derived from the parametric equation of the circle and the trigonometric identity  cos (a+b), and 
sin(a+b):

{x '=r.cos(α+θ)=  r.cos(α)⏟
x

. cos (θ)−r.sin(α)⏟
y

. sin(θ)

y '=r.sin(α+θ)= r.cos(α). sin(θ)+r.sin(α). cos (θ)

But most importantly we can express this rotation as the product of a 2x2 matrix and the point
[ x y ] :

[ x 'y ' ]=[cos(θ) −sin (θ)

sin (θ) cos(θ) ] .[ xy ]
What is even more cooler is we can now store this matrix with four floats and rotate any point  

with about θ by multiplying it with the matrix. 

Exercise:

1) Compute the rotation of θ=π
2  of the points [1 ;1] and [0 1] with a 2x2 rotation matrix.

1

α
θ

x, y

x', y'



1.1.2 2D scaling (Homothetic transformation)

Can we use matrices for scaling?

{x '=s x . x
y '=s y . y

 expressed with a matrix: [ x 'y ' ]=[ sx 0
0 s y

] .[ xy ]
Yes,  we can express  an homothetic  transformation  (scaling)  with  a 2x2 matrix.  Better  the 

composition of  transformation  matrices  result  in  the  successive  transformations.  Multiplying  a 
scaling matrix S with a rotation matrix R result in a matrix M which will rotate then scale a point P 
multiplied by it:

P '=M.P=S.R.P

1.1.3 2D translation and homogeneous coordinates

Can we translate a point with a 2x2? Answer is no, unfortunately:

{x '=x+t x
y '=y+t y

You can 't find a 2x2 matrix M translating a 2D point P into P ' such as P '=M.P. But there is a 
workaround.  Instead  of  representing  points  and  vectors  in  a  affine  space with  n Cartesian 
coordinates (n=2 for the 2D case) mathematicians have found we can represent these points and 
vectors  with one more coordinate.  As a result,  one can express the translation and all  affine 
transformations with a 3x3 matrix. Our 2D point or vector will now have a third coordinates w such 
as  P=[ x y w ].  These  coordinates  [ x y w ] are  called  homogeneous  coordinates as  opposed  to 
Cartesian  coordinates  [x  y].  The  3x3  matrix  for  translating  the  point  P with  homogeneous 
coordinates looks like this:

[
x '
y '
w ' ]=[

1 0 t x
0 1 t y
0 0 1 ] .[ xyw ]

But  how  is  this  translating  P anyway?  As  far  as  we  know  we  end  up  with  a  point
P '=[ x+w . t x y+w . t y w ]  and it can be hard to see the relation between this point and a more 

conventional  point  [ x y ] in  the  affine  space.  So  here  it  is,  we  need  to  convert  the  point  in 
homogeneous coordinates to Cartesian coordinates. To do so, simply divide all components of the 
homogeneous point by its last component:

2

R

Rotate

S

Scale



[ x  y  w]⏞
homogenous point

→[ x /w   y /w]⏞
Cartesian point

We also need to choose the value of w which is:

✔ w=0  for vectors
✔ w=1  for points

We  can  convert  the  point  from  the  last  example  to  Cartesian  coordinates.  We  had  in 
homogeneous coordinates:

 P '=[ x+w . t x y+w . t y w]

Which is now in Cartesian coordinates:

P '=[
( x+1. t x )

1

( y+1. t y)

1
]=[ x+t x y+t y ]

Finally if our point was in fact a vector we would have:

[
1 0 t x
0 1 t y
0 0 1 ] . [ xy0 ]=[

x
y
0 ]

The vector stay the same. Obviously translating a vector gives the same vector. However it's a 
special  cases  to  handle because we can't  divide by  w=0.  In  this  case the  vector's  Cartesian 
coordinates are simply the homogeneous coordinates and we omit the last component w.

To summaries instead of manipulating  n Cartesian coordinates in a  nD affine space we are 
going to use n+1 homogeneous coordinates in a nD projective space. This enables us to express 
transformations such as scaling translation rotation and even projection, with a matrix product. 
This  is   a  unified  representation  of  transformations  which  is  extensively  used  in  computer 
graphics.

Here is the homogeneous version of the rotation matrix and the scaling matrix in 2D:

[
cos(θ) −sin (θ) 0
sin (θ) cos(θ) 0

0 0 1 ] [
sx 0 0
0 s y 0
0 0 1 ]

Exercise:

1)  Do  in  this  order  the  translation  [1  3] and  scaling  [0,5  0,5] of  the  point  P=[2  2 ] with 
homogeneous matrices.

2) With the homogeneous matrix [
sx 0 t x
0 s y t y
0 0 1 ]  apply a translation and a scaling on point P (use 

the values in '1)' ). The result is different why?

3



1.2 3D transformations

Finding  the  homogeneous  matrices  in  3D  can  be  derived  from  the  2D  examples.  These 
derivations are not the point of this course so I won't go in too much details. You just need to know 
they exists and how to use them. For translation and scaling it is pretty straightforward:

[
sx 0 0 0
0 sy 0 0
0 0 s z 0
0 0 0 1

]
Scaling

[
1 0 0 t x
0 1 0 t y
0 0 1 t z
0 0 0 1

]
Translation

Rotation matrices about the x, y and z are a little be more complex to infer. The easiest to 
derive is the rotation about the z axis, which is basically the same as the 2D rotation except that 
we don't change the 'z' component. The three matrices below compute the rotation of a 3D point 
about the origin for a rotation of magnitude θ:

Rx=[
1 0 0 0
0 cos(θ) −sin (θ) 0
0 sin (θ) cos(θ) 0
0 0 0 1

]
Rotation about the x axis

R y=[
cos (θ) 0 sin (θ) 0

0 1 0 0
−sin (θ) 0 cos(θ) 0

0 0 0 1
]

Rotation about the y axis

Rz=[
cos(θ) −sin (θ) 0 0
sin (θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

]
Rotation about the z axis

Usually we need a more general form of the rotation to rotate around an arbitrary axis. It is the 
matrix below (you can derive by composing R x R y R z however you'll need to understand system 
coordinates changes presented in next section):

R xyz=[
t.x2

+c t.x.y−s.z t.x.z+s.y 0
t.x.y+s.z t.y

2
+c t.y.z−s.x 0

t.x.z−s.y tyz+sx t.z2
+c 0

0 0 0 1
]

Rotation about an arbitrary axis a⃗=[ x , y , z ] from the origin with c=cos(θ), s=sin(θ), t=1−cos(θ)

Another  useful  transformation  is  the  reflexion  matrix.  One can compute  the  reflexion  of  a 
point/vector  according  to  a  reflexion  plane.  (Finding  the  reflexion  matrix  looks  a  lot  like  the 

4

x

y

z

x

y

z

x

y

z

a⃗

x

y

z



derivation of R xyz and can be done with R x R y R z and an inverse scaling):

[
1−2a2

−2ab −2ac 0
2ab 1−2b

2
−2bc 0

−2ac −2b c 1−2c2 0
0 0 0 1

]
With [a ;b ; c] the normal to the plane.

If you want more details about how to derive these matrices you can look at the appendix.

1.3 Invert transformations

Sometime it is useful to find the inverse of a transformation. The inverse of a transformation A 
is another transformation A−1 that cancel the transformation A. For instance if we translate a 3D 
point with a homogeneous matrix  T,  we can translate it back to its previous position with the 
inverse transformation T−1:

In the previous section, I have shown how we could merge different transformations just by 
multiplying them successively. So if we want to translate a point with the matrix T and then with 
T−1we can do it with a single matrix M:

5

n(a b c)

P P' = T.P P = T-

1.P'
P'



M=[
1 0 0 t x
0 1 0 t y
0 0 1 t z
0 0 0 1

] .[
1 0 0 −t x
0 1 0 −t y
0 0 1 −t z
0 0 0 1

]=[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]= I

Here M is the matrix identity which means any point transformed by M will stay at the same 
position.

So for a general case if we transform a point by a homogeneous matrix A and we want to find 
the inverse transformation A−1, the matrix A−1 has to satisfy this equality:

A.A−1=I

What is worth noticing is this is how the inverse matrix is defined. Multiplying a matrix A by its 
inverse  matrix  A−1 equals  the  matrix  identity.  We  now  know  how  to  compute  the  inverse 
transformation  with  matrices  for  any invertible  transformations.  We can find  the  inverse  of  a 
transformation A by inverting its matrix.

Lets see other  examples.  For the scaling transformation the inverse transformation can be 
found intuitively:

 

[
sx 0 0 0
0 sy 0 0
0 0 s z 0
0 0 0 1

] .[
1/ sx 0 0 0

0 1/ s y 0 0
0 0 1/ sz 0
0 0 0 1

]=I

For the rotation about an angle θ we can rotate back by the opposite angle −θ.

However intuition has its limits, sometimes you'll handle a matrix A whose transformations are 
unknown to you. In these cases you have to find numerically  the inverse matrix  A−1.  How to 
compute the inverse matrix is way out of the scope of this course so I'll be brief on the topic.

 There is a lot ways you can compute the inverse of a matrix. You could resort to algorithms 
such as: Gauss-Jordan elimination, Gaussian elimination, or even a LU decomposition... Methods 
will highly differ depending on the size of your matrix (whether its an 4x4 or 1000x1000) and its 
density (if the majority of the coefficients are zero or not). Several libraries (solvers) implements 
various  techniques  to  find  the  inverse  of  a  matrix  or  solve  linear  system of  equations.  Each 
technique has its  tradeoffs,  some are faster  for  sparse matrix  (matrix  with a  majority  of  null 
coefficients) other are more appropriate for dense matrix.

In computer graphics 4x4 matrices are extensively used, so we usually “hard code” in the 
source files the inversion for matrices of this particular size. Direct inversion of matrix that small is 
fast enough. So we can forget about the previously stated methods to solve the equation A.A−1=I
. 

Here it is, how to compute the inverse of a general 4x4 matrix knowing its coefficients:

6



For A=[
a b c d
e f g h
i j k l
m n o p

] the inverse is A−1=
1
det

.[
c0 c1 c2 c3

c4 c5 c6 c7

c8 c9 c10 c11

c12 c13 c14 c15
]

With det=a.c0+b.c4+c.c8+d.c12 and:

 {
c0 = f.f 0−g.f 1+h.f 2

c1 = −b.f 0+c.f 1−d.f 2

c2 = b.f 3−c.f 4+d.f 5

c3 = −b.f 6+c.f 7−d.f 8

c4 = −e.f 0+g.f 9−h.f 10

c5 = a.f 0−c.f 9+d.f 10

c6 = −a.f 3+c.f 11−d.f 12

c7 = a.f 6−c.f 13+d.f 14

c8 = e.f 1− f.f 9+h.f 15

c9 = −a.f 1+b.f 9−d.f 15

c10 = a.f 4−b.f 11+d.f 16

c11 = −a.f 7+b.f 13−d.f 17

c12 = −e.f 2+ f.f 10−g.f 15

c13 = a.f 2−b.f 10+c.f 15

c14 = −a.f 5+b.f 12−c.f 16

c15 = a.f 8−b.f 14+c.f 17

{
f 0=k.p−l.o
f 1= j.p−l.n
f 2= j.o−k.n
f 3=g.p−h.o
f 4= f.p−h.n
f 5= f.o−g.n
f 6=g.l−h.k
f 7= f.l−h.j
f 8= f.k−g.j
f 9=i.p−l.m
f 10=i.o−k.m
f 11=e.p−h.m
f 12=e.o−g.m
f 13=e.l−h.i
f 14=e.k−g.i
f 15=i.n− j.m
f 16=e.n− f.m
f 17=e.j− f.i

Not all matrices are invertible so you'll have to check if the determinant 'det' is not null. For 
those interested in the method used to determined the coefficients of  A−1 you can search for 
techniques  using  the   matrix  of  co-factor.  In  my  case  I  just  used  a  mathematical  software 
(wxmaxima) which works like charm!

7



1.4 Coordinate systems

Its time talk a little more about coordinate systems, and especially how we can change from 
one coordinate system to another using matrices. But first lets define correctly what's a Cartesian 
coordinate system. The position of a 3D point with [x y z] Cartesian coordinates is defined as 
follow:

P=O+x. O⃗ x+ y. O⃗ y+ z.O⃗ z

The point O is the origin of the frame defined by the three orthogonal vectors O⃗ x,  O⃗ y and O⃗ z. 
Let  call  the  world  coordinates  the  point  coordinates  expressed  with  the  frame  O=(0,0 ,0), 
O⃗ x=(1,0,0), O⃗ y=(0,1 ,0) and O⃗ z=(0,0 ,1). 

We can define another frame which origin and vectors coordinates are defined according to the 
world coordinates. I will call this frame the local frame. Point coordinates expressed within the 
local frame are called local coordinates:

8

O⃗ x
O

O⃗ y

O⃗ z

x .O⃗ x

z . O⃗ z y .O⃗ y



In the above figure a point P can be either expressed in local coordinates (purple frame) or in 
the world coordinates  (black frame).  A common operation with  matrices  is  to change a point 
coordinates from local  to world coordinates. In the previous example to go from local coordinates 
to world coordinates we just have to do a translation:

Pworld=[
1 0 0 1
0 1 0 1
0 0 1 0
0 0 0 1

] . P local

As we can see there  is  to  possible  interpretations  with this  matrix  product.  It's  either  the 
translation of a point, or a coordinate system change from local to world coordinates. 

let Ol and Lx, L y and L z be respectively the origin and the vectors of a local frame expressed in 
the world coordinates.  The point's  P local (x , y , z) coordinates are defined according to this local 
frame. Finding Pworld can be done as follow: 

Pworld=O l+ x. L⃗x+ y. L⃗y+z. L⃗z

Which can be easily written with a matrix product:

Pworld=M .P local=[
Lxx Lyx Lzx Olx

Lxy Lyy Lzy Oly

Lxz Lyz Lzz Olz

0 0 0 1
] . P local

9

O⃗ x
O

O⃗ y

O⃗ z

1

1

P
local

(0,0,0)

O⃗ x
O

O⃗ y

O⃗ z

1

1

P
world

(1,1,0)



An interesting consequence with this interpretation is that we can go from world coordinates to 
local coordinates by inverting M:

P local=M −1 . Pworld

It's time to show why this coordinates system changes can be very convenient.  I'll  take an 
example  in  2D  to  be  more  concise.  So  lets  say  we  want  to  rotate  a  2D  point  with  a  3x3 
homogeneous matrix. As you now know this is achieved with:

P rot=R.P=[
cos (θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1] . P

10

P
local

O⃗ x
O

O⃗ y

O⃗ z

P
world

M.Plocal

P
local

O⃗ x
O

O⃗ y

O⃗ z

P
world

M.Plocal

M-1.Pworld

θ

P

Prot



 However this matrix  R compute the rotation about the origin only. So if we want to rotate a 
point around another center of rotation we will have to change the coordinate system. Let  C be 
the center of rotation doing a rotation around this point is done with:

Prot=(T.R.T−1
). P=[

1 0 C x

0 1 C y

0 0 1 ]. [
cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1] .[
1 0 −C x

0 1 −C y

0 0 1 ] . P
So we translate in such way that  C is now the center, achieve the rotation about the origin 

(which is C according to the world coordinates) and translate back. Otherwise said, we change the 
coordinate system to a local coordinate where C is the center, then rotate about the origin and go 
back to the world coordinate system:

1.5 Projections 

Now that we have seen all the mathematics for moving the objects lets see how we project 
them  into  the  image  plane.  We  are  interested  in  two  kind  of  projections  orthographic  and 
perspective:

11

P

C

P

C

P

θ

C

Prot
P

C

Prot

T-1 R T

Orthographic Perspective



In orthographic projection all the projection lines are parallel between each other. This kind of 
projection is not very realistic, two identical objects at different depth will have the same size on 
the image plane. A human eye would see the furthest object smaller because the projection lines 
would meet at a single point:

Yet orthographic projection is very convenient for modeling 3D objects. A lot of modeler works 
with 2D guides to build their objects. These guides can only be used in an orthographic view:

The user can iteratively go to front and left view and move the same point in 2D. The result is a 
correctly  positioned  point  in  3D.  This  would  not  be  possible  if  front  end  left  views  were  a 
perspective projection.

Finding matrices for perspective and orthogonal projection can be easier if we consider only 
special cases. For instance the orthogonal projection on an image plane parallel to the xy plane 
can be computed just by ignoring the z coordinate:

OProjz=[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

]

12

Orthographic view: 
front

Orthographic view: left Perspective view

Image 
plane

y

x

z

Projection matrix on 
the plane xy



Finding the matrix for perspective projection involves a bit of trigonometry.  Let's state the 
problem: we want to compute the perspective projection P' of a point P. As for the orthogonal 
case, we are going to project onto an image plane parallel to the plane xy and  at a distance d:

Finding the position of P ' (x ' , y ' , z ' ) according to P (x , y , z) and d can be done with the Thales 
theorem. Consider the triangles in the xz plane and yz plane:

We deduce the following ratio equalities:

 
d
z
=

x '
x

, 
d
z
=

y '
y

This leads us to P ' coordinates according to P and d:

{
x '=x. (

d
z

)

y '= y.(
d
z

)

z '=d

 which can also be written {
x '= x /(

z
d

)

y '= y /(
z
d

)

z '=d

 (1)

The last thing to do is to find a matrix  PProj z which will do the projection of  P. Here is the 
magic:

P '=PProj z .P=[
1 0 0 0
0 1 0 0
0 0 0 0
0 0 1/d 0

] .[
x
y
z
1
]=[

x
y
z

z /d
]

Remember that to go from homogeneous coordinates to Cartesians we need to divide by the 

13

y

x

d

P' P

x

x⃗

x'

z

P

P'

Image plane

d

y
y'

z

P

P'

d

y⃗



last component. Doing so in this case is called the perspective division and effectively project the 
point onto the image plane:

From homogeneous coordinates P '=[
x
y
z
z
d

]  to Cartesian coordinates: P '=[
x /(

z
d

)

y / (
z
d

)

z /(
z
d

) ]=[
x /(

z
d

)

y /(
z
d

)

d
]

This  is  another  reason  to  use  homogeneous  coordinates.  It  enables  us  to  compute  a 
perspective, and represent points at an infinite distance from the camera. The further away a 
point the greater the homogeneous coordinates w. This implies that the further the object the 
smaller it will appear. Another consequence is that two parallel lines will seems to meet at a single 
point:

In this course we will not need more general expression of the projections. We could try to find 
projection  matrices  according  to  an  arbitrary  image plane,  but  I'll  leave  that  as  an  exercise. 
Actually OpenGL only uses the special cases presented here. As we are going to see, instead of 
projecting according to a camera position and viewing direction OpenGL will simply transform the 
entire scene to simulate the camera movements. The scene is always projected for a camera at 
(0,0, 0) looking towards −z.

1.6 Transformations in OpenGL

14

Z

As the rail are going away there projection 
diminish.



1.6.1 Pipeline

We have seen all the theory about transformations now its time to practice. In this section I'll  
give a program which draws a cube, then I'll describe how OpenGL transform the 3D vertex into 
2D window coordinates. Here is the program:

 
(avec un exemple de prog)

comment marche opengl → (multiplication à chaque glTrans)

1.6.2 Stack of matrices

modélisation hierarchique (commutativité)

pipeline de transformation (pourquoi on clip de -w à w) ce qui explique ndc -1 1

mapping du z  et  utilisation glDepthRange.  Lire  le z  buffer  (autre  chapitre  peut  être  dans 
pipeline)

1 Texture Matrix (GL_TEXTURE)

Texture coordinates (s, t, r, q) are multiplied by GL_TEXTURE matrix before any texture 
mapping. By default it is the identity, so texture will be mapped to objects exactly where you 
assigned the texture coordinates. By modifying GL_TEXTURE, you can slide, rotate, stretch, and 
shrink the texture.

// rotate texture around X-axis

glMatrixMode(GL_TEXTURE);

glRotatef(angle, 1, 0, 0);

15



2 Color Matrix (GL_COLOR)
The color components (r, g, b, a) are multiplied by GL_COLOR matrix. It can be used for color 
space conversion and color component swaping. GL_COLOR matrix is not commonly used and 
is requiredGL_ARB_imaging extension.

3 Other Matrix Routines
glPushMatrix() : 

push the current matrix into the current matrix stack.
glPopMatrix() : 
pop the current matrix from the current matrix stack.
glLoadIdentity() : 
set the current matrix to the identity matrix.
glLoadMatrix{fd}(m) : 
replace the current matrix with the matrix m.
glLoadTransposeMatrix{fd}(m) : 
replace the current matrix with the row-major ordered matrix m.
glMultMatrix{fd}(m) : 
multiply the current matrix by the matrix m, and update the result to the current matrix.
glMultTransposeMatrix{fd}(m) : 
multiply the current matrix by the row-major ordered matrix m, and update the result to the current 
matrix.
glGetFloatv(GL_MODELVIEW_MATRIX, m) : 
return 16 values of GL_MODELVIEW matrix to m.

 

16


	1 Transformations
	1.1 2D transformations
	1.1.1 2D rotation
	1.1.2 2D scaling (Homothetic transformation)
	1.1.3 2D translation and homogeneous coordinates

	1.2 3D transformations
	1.3 Invert transformations
	1.4 Coordinate systems
	1.5 Projections 
	1.6 Transformations in OpenGL
	1.6.1 Pipeline
	1.6.2 Stack of matrices
	1 Texture Matrix (GL_TEXTURE)
	2 Color Matrix (GL_COLOR)
	3 Other Matrix Routines




