
FAST INSTRUCTION-ACCURATE SIMULATION WITH SIMNML1

H. Cassé, J. Barre, R. Vaillant and P. Sainrat

{casse, barre, vaillant, sainrat} @irit.fr
Université de Toulouse, Institut de Recherche en Informatique de Toulouse (IRIT)

Instruction Level Simulation has received big attention as it allows out-of-silicium test and hardware exploration. In this paper,
we present GLISS2, the second release of a simulator generator based on the NML ADL. Thanks to the implementation of a set of
optimization techniques (acceleration in memory emulation, caches for the decode step and blocking of instruction descriptors),
we multiply by an average factor of 10 the simulation performances. Additionally, although the experimentation has only been made
for the PowerPC, the performed optimization extends naturally to any instruction set described in NML.

Index Terms—Computer Science, Microarchitecture, Simulation

I. INTRODUCTION

nstruction level simulation has received a big attention in
the last ten years as it provides an easy and cheap way to

analyze the behavior of computer systems. These simulators
have been used in domains as different as architecture
exploration (to estimate performances, power, etc), embedded
systems validation (test without the actual hardware) or
program emulation on a host system with a different
architecture.

I

There are different ways to implement Instruction Set
Simulators (ISS). Initially, such simulators were implemented
by hand but their development was usually long and painful.
More modern approaches use the description of the Instruction
Set Architecture (ISA) in an Architecture Description
Language (ADL) in order to generate the simulator
automatically. Although the latter approach improves the
productivity and makes the debugging of the obtained
simulator easier, the produced simulators were often much
slower than hand-written ones.

In this article, we want to show that the performance gap
between automatically generated and hand-written simulators
can be reduced if a special attention is payed to the way the
code is generated and the different simulation steps are
implemented.

The first section shows the generation process of our ISS
generator, called GLISS2, second generation of GLISS [1] and
the simulation process. Section III presents the different
optimizations performed on the memory module, on decoding,
and on the execution step. After the presentation of the related
works, we conclude in the last section.

II. GENERATION AND SIMULATION

This section presents the ADL used in GLISS2 and the basics
of the simulator generation.

A. SimNML

NML is an ADL, firstly described in [2], that allows to
describe the ISA of a microprocessor in a synthetic and smart
way, alleviating this painful and error-prone task. It provides

also a specific syntax to model the instruction execution at the
micro-architecture level but this extension is rarely used in
practice as it is not adapted to the complexity of the current
architectures. Yet, NML has been largely successful in
implementing a lot of ISA as different as RISC (PowerPC,
ARM, Sparc, TriCore) or CISC (M68HCS12, x86) or to
derive machine code utilities as simulators, disassemblers or
compiler back-ends [13]. NML is also used to implement
instruction decoding in machine-level static analyzer like
OTAWA [14].

NML describes the ISA as a collection of types, state items,
modes and operations. Type system is bit-accurate and allows
to qualify single registers, register banks and memories. State
item aliases allow also to mimic some register configurations
(like x86 registers) or to maintain type safety when accessing
memories with data of different types.

Modes and operations provide a synthetic and concise way
to describe the machine instructions. They are organized in a
so-called AND-OR tree. An AND node is a node defining an
instruction or a family of instructions from a set of parameters
and attributes that are shared by all the derived instructions.
This allows factorization of some description parts. OR nodes
are used to describe alternatives, for example, in a family of
instructions. Modes are used to describe state accesses like
addressing modes while operations describe the actual
instructions. To better understand the AND-OR tree structure,
the example in listing 1 is an excerpt from the PowerPC
description showing the initial node of the tree. It takes as
parameter the set of all instructions but factorizes the common
behavior of PC incrementation.

op instruction (x: allinstr)
syntax = x.syntax
image = x.image
action = {

NIA = NIA + 4;
x.action;

}
op allinstr = uisa_instr

| vea_instr
| oea_instr

LISTING 1 SimNML Sample

1The works described in this paper have been developed in the context of the SOCKET FUI Project.

1

mailto:sainrat%7D@irit.fr

This sample shows also the standard attributes including
disassembly syntax, binary image and semantics action of the
instructions. The latter attribute, describing the execution
behavior, is expressed in an algorithmic-like language for
statements and in a C-like syntax for expressions (for bit-level
computation). This leads to a language relatively close to the
dialects used in the ISA handbooks.

B. Generation

The generation is performed by GLISS2 on the NML ISA
description to produce C sources. The usage of the C
programming language ensures good portability and
performances of the simulator because (1) the produced code
is very close to the host hardware and allows finer control on
the computation and (2) it benefits from good optimizing
compilers. The sources are then compiled to make a library or
to build stand-alone simulator or disassembler. The library
may be embedded in any program requiring any service
supplied by GLISS2 (simulation, disassembling, instruction
decoding). In addition, C generation strengthens the portability
of the obtained library as a lot of running environments use it
as an interface.

To improve performances, the key word of the generation
process was: remove all dynamic computations if they can be
computed at compilation time. Indeed, it is incredibly easy to
obtain code that was accounted to be optimized out by the
compiler but that is not because of compilation bounds like
compilation units, library organization or memory accesses.

One good example is the management of the endianness if it
is different on the simulated and on the host architectures.
A naive implementation of this function, shown in Listing 2
tests it at run-time:

int is_host_little(void) {
union { uint8_t c[2];

 uint16_t w; } u;
u.w = 0xffaa;
return u.c == 0xaa;

}
uint16_t w = read_word_from_memory(address);
if(is_host_little())

invert_word(w);

LISTING 2 Naive Endianness Test

The idea supporting this piece of code is that (1) different
specialized versions of sources are not needed and (2) such a
small function will be automatically in-lined by the compiler
each time it is called. The problem is that most C compilers
are not able to perform such an optimization if the function is
located in a different compilation unit. One may also observe
that, even if the function is in-lined, this approach is a waste of
time: simulated and host endianness is known at compilation
time and the exact behavior of the simulator code can be
determined at this moment. This is easily achieved using C
preprocessor directives because GLISS2 is able to obtain the
host endianness at generation time to configure the
compilation behavior accordingly, as shown in Listing 3.

uint16_t w = read_word_from_memory(address);
#if HOST_ENDIANNESS != TARGET_ENDIANNESS

invert(w);
#endif

LISTING 3 Endianness with Preprocessor

The performance gain is small at unit level but such an
operation is usually repeated tenth of thousands times in a
simple simulation and may finally cause important waste of
time.

In the same way, we specialize the generated code as much
as possible. SimNML provides a versatile way to handle bit
fields using the syntax: item<upper bound .. lower bound>.
Such a syntax allows to handle bit fields in expressions or to
modify them when put in the left hand side of an assignment.
In addition, this operation supports dynamic determination of
bounds to get as complex operations as bit field inversion if
the upper bound is less than the lower bound.

Although an all-in-one function is required to implement
the more complex forms of this operation, most calls of this
operator exhibits simpler behaviors: bounds are constants or
give access only to one bit. In these cases, costly calls to a
complex function are replaced by specialized in-lined
expressions with pre-computed masks. This basic optimization
has shown to make an average performance gain of several
MIPS (Million Instruction Per Second).

This philosophy is applied all over the different modules
composing the simulator. For example, fixed-size instruction
set decoding, as found in RISC, is far more simple to handle
than variable-size CISC instruction sets and, therefore, uses a
simpler implementation of the instruction decoder.

C. Simulation

The realization of the instruction simulation is performed in
three steps: (a) fetch, (b) decoding and (c) execution.

The fetch step consists in accessing the program counter of
the program, to get the instruction word from the memory and
to match it with an instruction described in the ADL. If no
match can be established, the instruction is considered as
undefined and an error may be raised according to the running
environment.

The complexity for fetching instruction comes from the

2

Figure 1: Decoding Tree

root
11111111 11000000 00000000 00000000

0

768

517

513

STR

LDR

111000 00100000 01111111

111000 00111000 10000000

10

11 42

43
ADD_R

ADD_I SUB_R

SUB_I

513
513

MOV_R
MOV_I

number of instructions usually found in an ISA and from the
fact that a bit, in an instruction word, may be used either to
encode the operation code, or an argument in order to keep the
instruction encoding compact. Usually, the instruction are
grouped in a hierarchical tree of instruction sets that share the
same value for a specific set of bits. The leafs of this tree
identify specific instructions. GLISS2 automatically extracts
this tree from the instruction images and generates an optimal
tree (in terms of height) as shown in Figure 1.

Each non-leaf white node of the tree contains a mask (in
white boxes) identifying involved bits and an array giving the
children nodes according to the value of these bits. Leaf gray
nodes only give the code of the recognized instruction.
The traversal of this tree is pretty fast with fixed-length ISA
but more complex with variable-size ISA as the length of the
instruction depends on its operation code. Therefore, the tree
traversal may require to load additional bytes from the
memory what slows down the fetching process. One may also
notice that the fetch speed depends also on the complexity of
the used masks that may require several shifts and mask
operations to get index on the children nodes.

At this point, the instruction has been identified and specific
processing can be applied. The decoding phase consists in
calling an instruction-specific function that extracts the
arguments of the instruction to provide them to the execution
phase. It is implemented as bit field accesses to the arguments
encoded in the instruction word. The efficiency of this phase
depends on the number of arguments to retrieve as it is
implemented as a set of masking and shifting operations.

The final step performs the actual execution of the
instruction. The function implementing the instruction is
called and uses the decoder arguments of the previous phase.
Usually, the action attribute is translated in C code whose
main effect is to modify the state of the simulation possibly
including memory accesses for data.

Three main components are involved in the instruction
execution and impact the simulation time. The instruction
execution function is optimized during the generation phase
but we will see that it remains place for improvement. The
memory is either used in the fetch step, or during the
execution to read or write data in memory: good performances
will have an effect over all the simulation process. For the
decoding step, one may observe that, usually, the instructions
do not change during the simulation while, in our process,
each instruction is decoded each time it is executed.
Consequently, factorizing all or part of these extraneous
decoding should produce gain.

III. OPTIMIZATIONS

This section presents the efforts performed on GLISS to
improve performances. The different strategies have been
evaluated with 4 sets of benchmarks:

1. integer benchmarks of Mälardalen [3] (MINT),
2. float benchmarks of Mälardalen [3] (MFLT),
3. the automotive set of MiBench [4] (AUTO),
4. a selection of SpecInt95 benchmarks [5] (gcc,

crafty, mcf, parser).
The selection in the different series of benchmarks has been

mainly constrained by our implementation of system calls.
The host machine was an Intel Core 2 Duo at 3 Ghz with 4 Gb
memory running Linux Mandriva 2010.

A. The Memory Module

The memory is one of the most used module during the
simulation. It is used at fetch time to get instruction words or
during the execution step when the instruction performs
memory accesses. Therefore, its implementation has a straight
impact on the simulation performances.

Other challenges of the memory implementation include
support of endianness and of the address space. For the
former, a well-known technique is used: byte order is inverted
in the memory page so that scalar data reading is the same
operation in the simulated language and on the host machine
at the small cost of fixing the offset in the page2.

Support of simulated address space of equal or bigger size
than the one of the host machine is also an important issue.
The first statement is that the memory cannot be implemented
as a simple array of bytes.

In GLISS2, the memory is structured in pages and only the
used pages are represented. To retrieve the page matching an
accessed address, two indirect arrays are used as represented
in Figure 2. The address is split in different areas whose size
may be configured at compilation time (as default we are
using 4Kb pages, 4096 entries primary table and 16-entries
secondary tables). The (p) part indexes the primary table and
allows to obtain the secondary table. This one, indexed by the
(s) part, gives a linked list of pages matching the different
memory areas (a). Once the matching page is found, the
accessed word is read from the page using the offset part (o).

The part sizes proposed in Figure 2 give a good tradeoff
between access speed and memory usage. Yet, as
experimental results have shown that a lot of time is spent in
the tables access, we also implemented a memory module
release with only one level of indirection: as a side effect, the
memory footprint is larger with a table of 256 Kb on 32-bits
machines (instead of 16 Kb in the two-level implementation).

2 Notice that GLISS2 only supports little and big endian encoding: other
byte ordering are currently mostly no more used.

3

Figure 2: Memory Access

(o) 12b(p) 12b(s) 4b(a) 4b
address (32 bits)

(p) (s) (a)

(o)primary
table

secondary
table

The Table 1 compares the performances of the two
proposed memory implementations, 2-levels or 1-level. With
an average gain of 9,58%, the 1-level memory implementation
shows better results and will be used in the following.

B. Instruction Decoding

Instruction decoding is another costly step during
simulation. Its complexity depends on the number and the
encoding of the arguments and on the size of the instructions.
It is basically implemented as a set of shifts, AND and OR
operations to extract the bit fields from the instruction word
and to recompose the instruction arguments. To fit well with
the C language working, sign extension may also be required.
The resulting arguments are then stored in a data structure, the
instruction descriptor, that is used during the execution step.

A straight approach to reduce cost of decoding is to avoid
repeated decoding for the same instruction. In fact, such a case
is very frequent because most execution time is spent in loops
where the same instructions are executed ever and ever. To
benefit from this property, we have extended our decoder with
a cache storing the already-decoded instruction descriptors.
When the instruction is in the cache, the descriptor is directly
passed to the execution step. In the opposite, the usual costly
work is performed by fetching and decoding the instruction
and the obtained instruction descriptor is stored in the cache.

We have experimented two types of keys for indexing the
cache. The first one is the address of the instruction: it is
straight-forwardly got from the PC register and quickly
handled for accessing the cache. With the second key, we
wanted to get benefit from using the same descriptor for
instructions at different addresses but with the same encoding
bytes, that is, the same instruction with the same arguments.
The gain would include the decoding time but also a better use
of the host data cache. It is achieved by the use of the
instruction word as the table index what is relatively easy with
a RISC processor but more complex with variable-size ISA.
Whatever the instruction size, the real bottleneck comes from
the memory access required each time an instruction is
executed that is so costly that it cancels any benefit from the
descriptor factorization.

So, we only retained cache indexing by address and have
experimented different ways to realize the cache. For all
implementations, the cache is structured in a set of power-of-
two sets, that allows quick extraction of the index from the
address. Each line is composed as a linked list of instruction

descriptors for faster re-organization of the list.

The first implementation, INF, considers an infinite cache
that may be viewed as the top of obtainable performances
although this is not ever true because of effects depending on
the host machine data cache. Other implementations exhibit a
finite cache with different replacement policies: FIFO and
LRU (Least Recently Used). Results of this comparison are
shown in the Table 2 that displays speed multiplier factor
relative to the performances without any decode cache and 1-
level memory. LRU is the best method with an average factor
of 7,43 (743 %) of gain. One may also observe (1) we have no
result with an infinite cache for GCC due to memory
exhaustion and (2) that even the worst cache results provide an
improvement of 4,42: the caches are essential in performance
look-up.

Even if the caches improve greatly performances of the
decoding step, the retrieval of an instruction descriptor
remains costly as it may include the traversal of a linked list.
Yet, one may observe a unity of execution between
instructions. This property is well known in optimization
compilers where the program is represented as Control Flow
Graph (CFG). To reduce the size of the CFG, there is not a
vertex for each instruction but for a group, usually called
Basic Block (BB). A BB is a sequence of instructions such
that all instructions are executed as soon as the first one is
executed and, therefore, only the last instruction can be a
branch. From a simulation point of view, this means that we
can generate blocks of instruction descriptors matching
instruction block and we have to call only once the decoder
routine to get it and execute the block instructions.

We have tested two implementations of this concept. In the
first one (STRACE), we have considered blocks of fixed size,
possibly crossing BB bounds, but easier and faster to process.
In DTRACE, we are completely implementing the concept of
BB but at the price of (1) variable-size blocks and (2)
the requirement to know which instructions are branches to
bound blocks. Fortunately, this is easily implemented in NML
by adding a specific boolean attribute. The table 3 compares
the different approaches giving the speedup improvement in
percent compared to the LRU only cache performances. On
the average, DTRACE seems to do a bit better but, in some
cases as gcc or crafty, STRACE takes largely over.

Although we may have expected more performances from a

4

Table 2: Decoding with Cache

Table 1: Memory Implementation Comparison
Gain (%)

MINT 5.89 6.49 10.13

MFLT 5.61 6.12 9.09

AUTO 5.55 6.01 8.37

4.93 5.17 4.87

6.02 6.77 16.28

6.17 6.83 10.6

5.99 6.64 10.85

5.88 6.26 6.46

5.76 6.29 9.58

Benchmark 2-level (Mips) 1-level (Mips)

crafty

gcc

gzip

mcf

parser

average

MINT 8.57 7.19 9.06

MFLT 5.75 5.42 6.03

AUTO 5.23 4.62 5.58

10.2 9.44 11.47

5.55 7.31

6.26 5.22 6.95

6.68 5.92 7.27

5.33 4.42 5.78

6.86 5.97 7.43

Benchmark Inf ( 100%) FIFO ( 100%) LRU ( 100%)

crafty

gcc

gzip

mcf

parser

average

simpler implementation as STRACE, the cost of calling more
often the decoding routines, on x86, seems to be unable to
balance the more complex processing of the DTRACE. This
statement is even more exploited in the following.

C. Instruction Execution

Instruction execution step can also be optimized. The first
optimization comes from the C compilation: any optimization
can benefit to the generated simulator. Secondly, we can also
act on the way an instruction is executed: basically, execution
of instructions involves two features on the host machine
microprocessor: instruction cache and branch predictor.

The instruction cache provides fast access to the host
machine instructions used in the simulation functions
implementing a particular instruction. This mechanism is
automatic and provides usually good performances thanks to
the temporal and spatial locality of programs. In case of
a simulator, this work may cause performance loss if two
functions implementing very frequent instructions are in
conflict as they are mapped to the same cache sets.

A solution would be (1) to obtain a profile of instruction
frequencies and (2) to avoid cache conflicts between most
frequent instruction functions. The former task is usually hard
mainly because we must get a representative set of
benchmarks and inputs and collect and merge obtained
statistics from the different used benchmarks. Fortunately, our
simulator provides an automatic way to perform this work: a
profiling file may be passed as argument to indicate where to
store and to accumulate the frequencies measured during a
simulation. Once the set of benchmarks has been measured,
the obtained profiling information may be used in turn to re-
generate the optimized simulator.

In the other hand, the avoidance of cache conflicts is easily
achieved by ordering execution functions according to the
instructions profiles. So the functions of more frequent
instructions would be positioned close enough to ensure they
do not conflict according to cache sets. Table 4 sums up
performances obtained with this approach that, unfortunately,
gives very few improvements: in fact, conflicts in the host
instruction cache are too infrequent to get significant benefit
from this optimization.

Yet, the profiling information may be used to perform
another kind of optimization. To take into account the branch
predictor, we have to survey the branches involved in the

instruction simulation. The execution is usually performed by
getting a pointer on the function implementing the instruction
and by calling it. From a general point of view, indirect
pointer calls are badly processed by the branch predictor of the
host machine, particularly in the case of a simulator where the
branch targets change as often as instruction are different in
the program. Therefore, most of these branches leads to bad
prediction and big penalties on the simulation time. Although
we have not been able to verify this statement as we do not
know any profiling tool capable of tracing branch prediction
misses, the improvement in the obtained results advocates for
such a scenario.

The solution to the previous issue is to avoid as indirect
branches as possible. Using the instruction profiling described
in the previous paragraph, it becomes possible to inline the
action of more used instructions in the execution routine and
to access them using a set of selections as in Listing 2. At
simulation time, each selection gets its branch entry in the
branch predictor (no interference between instructions) and the
order in selection ensures the shorter time for the more
frequent instructions.

To finalize this optimization, we have to determine how
many instructions have to be in-lined. This may depend on the
host machine and on the type of the simulated ISA as we get a
double impact on the host branch predictor and on the host
instruction cache. Experimental measurements, as shown in
Figure 3 for PowerPC instruction set on Mälardalen
benchmark [3], show that performances grow quickly until 6-8
instructions, become stable during a short phase and slowly
decrease beyond 10-12 instructions. An interesting extension
would be to provide an automatic way to find such a
threshold.

Table 4 shows performances gain provided by the two
methods to improve the execution step, REORG for execution

5

if(id == ID_INST1)
/* code INST1 */

else if(id == ID_INST2)
/* code INST2 */

else if(id == ID_INST3)
/* code INST3 */

…
else

/* usual execution */

LISTING 2 Instruction Inlining

Table 3: Decoding with Block Cache

STRACE (%) DTRACE (%)

MINT 26.36 39.25

MFLT 17.8 32.96

AUTO 46.9 52.24

14.36 2.26

35.59 24.64

32.23 41.79

24.01 27.24

48.06 52.32

30.66 34.09

Benchmark

crafty

gcc

gzip

mcf

parser

average

Figure 3: Effect of Instruction Inlining

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

40

42

44

46

48

50

52

Inlined Instructions

P
e

rf
o

rm
a

n
ce

s
 (

M
ip

s
)

function reorganization according to the profile and INLINE
for in-lined release. INLINE method exhibits an average
speedup of 6,95% with an important peak of 34,79% for
MINT. In fact, the profiling has been made on this benchmark
and, accidentally, works also very well with gzip. Yet, this
leads to an important issue of this technique: how to define a
meaningful profile? Adversely, this allow also to tune
precisely the simulator for a family of benchmarks that will be
run many times, as done in hardware exploration.

This table show also the top performances, in MIPS,
obtained by GLISS v2 on the selected benchmarks.

IV. RELATED WORKS

There are relatively little literature about the ISS
optimizations we are aware of, except concerning Pre- or Just-
In-Time native compilation of simulated programs [6][7].
These approaches give the best results but at the price of a
loose of control on the simulation.

This lack of information is due to the fact that either some
ADL are now developed in industrial context, or are not
targeted to fast simulation. In this category, we include ADL
as Expression [8], Lisa [9] or MIMOLA [10].

Harmless [11] is a relatively recent and active
implementation of an ISS. Its ADL is relatively close to
SNML but allows several trees of factorization for each
attribute defining an instruction (image, syntax or action). This
leads to a shorter description of the ISA description but at the
price of a language and a description harder to learn and to
handle. Whatever, Harmless has been successful to describe
several ISA, RISC or CISC. The target generation language is
C++ what makes relatively heavy the process of creating an
instruction descriptor. Therefore, they have implemented an
address-indexed cache, only direct-mapped, that prevents their
performances from reaching ones of GLISS2.

From a perspective of hand-written simulators, there are
few documented implementations. Nevertheless, we can site
SimARM [12] that makes also use of decoded instruction
cache but with an infinite size. As shown in our measurement,
an infinite size cache may cause loss of performances,
probably due to bad interferences in the host data cache.

V. CONCLUSION

This paper has presented the different techniques

implemented in GLISS2 to improve the simulation speed,
namely, (1) extreme specialization of the generated code,
(2) optimization of the memory module, (3) use of an
aggressive cache policy in the decoding step and (4) blocking
of instruction descriptors in order to reduce the invocations of
the decoder. These optimizations have been implemented
keeping in mind the need of instruction level simulation and,
as GLISS2 describes the ISA thanks to the NML ADL, they
can be easily extended to any instruction set.

In future works, we plan to explore more deeply an
important factor of slowdown, the simulation of floating-point
operations. In the case of the PowerPC, this requires to
support a complex set of bits in the float status register: (1)
hard to extract from POSIX float support and (2) rarely
accessed by real programs. Using libraries specialized into the
host processor (often an x86), it may be possible to obtain
more speedup. Our measurements have also shown that the
optimization efficiency depends on the used benchmark.
An interesting extension would be to provide a process to
select the optimal simulator configuration according to the
targeted benchmarks and even the actual host machine.

In addition, one may observe that NML works by in-lining
big pieces of code, often only handling rare error cases, that,
in turn, may have adverse effects in the instruction cache
usage. It would be more valuable to isolate them in their own
function. More generally, an effort should be done to optimize
code generated from NML.

REFERENCES

[1] T. Ratsiambahotra, H. Cassé, P. Sainrat, A Versatile Generator of
Instruction Set Simulators and Disassemblers, International Symposium
on Performance Evaluation of Computer and Telecommunication
Systems (SPECTS 2009), IEEE, p. 65-72, 2009.

[2] A. Fauth, J. Van Praet, and M. Freericks, Describing instruction set
processors using nML, Proceedings of the 1995 European Conference
on Design and Test, IEEE Computer Society.

[3] http://www.mrtc.mdh.se/projects/wcet/benchmarks.html
[4] http://www.eecs.umich.edu/mibench/
[5] http://www.spec.org/
[6] I. Böhm, B. Franke and N. Topham, Cycle-Accurate Performance

Modelling in an Ultra-Fast Just-In-Time Dynamic Binary Translation
Instruction Set Simulator, SAMOS'10, 2010.

[7] F. Brandner, A. Fellnhofer, A. Krall, and D. Riegler, Fast and Accurate
Simulation using the LLVM Compiler Framework , RAPIDO, 2009.

[8] A. Halambi, P. Grun, and al. Expression: A language for architecture
exploration through compiler/simulator retargetability, European
Conference on Design, Automation and Test (DATE), 1999.

[9] S. Pees, A. Hoffmann, V. Zivojnovic, and H. Mey,. Lisa - machine
description language for cycle-accurate models of programmable dsp
architectures, DAC '99: Proceedings of the 36th ACM/IEEE conference
on Design automation, 1999.

[10] S. Bashford, U. Bieker, B. Harking, R. Leupers, P. Marwedel,
A. Neumann, and D.Voggenauer, The mimola language version 4.1,
Technical report, Lehrstuhl Informatik XII, University of Dortmund,
Dortmund, 1994.

[11] R. Kassem, M. Briday, J.-L. Béchennec, G. Savaton and Y. Trinquet,
Instruction Set Simulator Generation Using HARMLESS, a New
Hardware Architecture Description Language, IMCSIT'08, 2008.

[12] Alpa. Shah, ARMSim: An Instruction-Set Simulator for the ARM
processor, Columbia University.

[13] S. Bhattacharya, Generation of GCC Backend from Sim-nML Processor
Description, Master thesis, Indian Institute of Technology, Kampur,
2001.

[14] C. Ballabriga, H. Cassé, C. Rochange, and P. Sainrat, OTAWA: an Open
Toolbox for Adaptive WCET Analysis, SEUS 2010.

6

Table 4: Execution Optimization
REORG INLINE

(%) (MIPS) (%) (MIPS)

MINT 0.43 73,24 34,79 98,3

MFLT 6.3 52,95 10,68 55,13

AUTO 1.53 48,39 3,12 50,16

-0.72 63,77 -3.89 61,73

-3.03 60,77 -4.08 60,11

0.01 60,94 9,08 66,47

-3.47 57,32 0,69 59,79

-0.32 53,46 -0.54 53,34

0.09 58,98 6,95 63,13

Benchmark

crafty

gcc

gzip

mcf

parser

average

http://www.spec.org/
http://www.eecs.umich.edu/mibench/
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html

	I. Introduction
	II. Generation and Simulation
	A. SimNML
	B. Generation
	C. Simulation

	III. Optimizations
	A. The Memory Module
	B. Instruction Decoding
	C. Instruction Execution

	IV. Related Works
	V. Conclusion

