# Definition: Laplacian Matrix for triangle meshes Quick definition of the Laplacian matrix on a triangular mesh. I give an in depth explanation here. What is commonly called the Laplacian matrix $$\mathbf L$$ in the literature of geometry processing is:

$$\mathbf L_{ij} = \left \{ \begin{matrix} w_{ij} = \frac{1}{2} \cot \alpha_{ij} + \cot \beta_{ij} & \text{ if j adjacent to i} \\ -\sum\limits_{{j \in \mathcal N(i)}} { w_{ij} } & \text{ when } i = j \\ 0 & \text{ otherwise } \\ \end{matrix} \right .$$

• $$\mathbf L \in \mathbb R^{n \times n}$$ with $$n$$ the number of vertices of the mesh
• $$\mathbf L_{ij}$$ is a single element of the matrix
• The row $$i$$ and column $$j$$ of the matrix represent vertex indices as well
• $${j \in \mathcal N(i)}$$ is the list of vertices directly adjacent to the vertex $$i$$
• Each row of $$\mathbf L$$ contains the list of vertices weights adjacent to $$i$$
• $$\mathbf L$$ is symmetric positive semi-definite

On the other hand the Laplacian *operator* is defined as $$\mathbf {\Delta f} = {\mathbf M}^{-1} \mathbf L$$ with the Mass matrix $$\mathbf M$$, a diagonal matrix that stores the cell area (blue area on the figure) of each vertex:

$$\mathbf M^{-1} = \begin{bmatrix} \frac{1}{A_0} & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \frac{1}{A_n}\\ \end{bmatrix}$$

$$A_i = 3 \sum\limits_{{T_j \in \mathcal N(i)}} {area(T_j)}$$

• $$T_j \in \mathcal N(i)$$ list of triangles adjacent to $$i$$
• $$A_i$$ can also be computed with mixed voronoi area.

## Code

See the [ C++ code ] to build the laplacian matrix with cotan weights (get_laplacian() procedure)

If your mesh is represented with an half-edge data structure (each vertex knows its direct neighbours) the pseudo code to compute $$\mathbf L$$ is:

 // angle(i,j,t) -> angle at the vertex opposite to the edge (i,j)
for(int i : vertices) {
for(int j : one_ring(i)) {
sum = 0;
for(int t : triangle_on_edge(i,j))
{
w = cot(angle(i,j,t));
L(i,j) = w;
sum += w;
}
L(i,i) = -sum;
}
}


On the other hand the Laplacian $$\mathbf L$$ may be built by summing together contributions for each triangle, this way only the list of triangles is needed:

for(triangle t : triangles)
{
for(edge i,j : t)
{
w = cot(angle(i,j,t));
L(i,j) += w;
L(j,i) += w;
L(i,i) -= w;
L(j,j) -= w;
}
} 